Announcement

Collapse
No announcement yet.

Metabolism Research for Take it Off and Thyroid Modules

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Metabolism Research for Take it Off and Thyroid Modules

    Below is some information on Metabolism and some examples of a little research used to update the Take it Off and Thyroid Modules.

    The Design of Metabolism

    Anabolism (pronounced: uh-nah-buh-lih-zum), or constructive metabolism, is all about building and storing: It supports the growth of new cells, the maintenance of body tissues, and the storage of energy for use in the future. During anabolism, small molecules are changed into larger, more complex molecules of carbohydrate, protein, and fat.

    Catabolism (pronounced: kuh-tah-buh-lih-zum), or destructive metabolism, is the process that produces the energy required for all activity in the cells. In this process, cells break down large molecules (mostly carbohydrates and fats) to release energy. This energy release provides fuel for anabolism, heats the body, and enables the muscles to contract and the body to move. As complex chemical units are broken down into more simple substances, the waste products released in the process of catabolism are removed from the body through the skin, kidneys, lungs, and intestines.

    Several of the hormones of the endocrine system are involved in controlling the rate and direction of metabolism. Thyroxine (pronounced: thigh-rahk-sun), a hormone produced and released by the thyroid (pronounced: thigh-royd) gland, plays a key role in determining how fast or slow the chemical reactions of metabolism proceed in a person's body.

    Another gland, the pancreas (pronounced: pan-kree-us) secretes hormones that help determine whether the body's main metabolic activity at a particular time will be anabolic or catabolic. For example, after eating a meal, usually more anabolic activity occurs because eating increases the level of glucose - the body's most important fuel - in the blood. The pancreas senses this increased level of glucose and releases the hormone insulin (pronounced: in-suh-lin), which signals cells to increase their anabolic activities.
    Peripheral metabolism of thyroid hormones is a critical component of the impact these hormones have on intracellular function. Primary hypothyroidism, which manifests as elevated thyroid stimulating hormone (TSH) and low T4 levels, and secondary hypothyroidism, manifesting as a combination of low T4 levels and low TSH secondary to pituitary dysfunction, are both well defined.

    However, perturbations in thyroid hormone levels secondary to alterations in peripheral metabolism have received far less clinical attention. Several syndromes, such as "euthyroid sick syndrome" (ESS) and "low T3 syndrome," have been classified within the medical literature. The common feature of these disorders is a low level of circulating T3, with generally normal to slightly elevated blood T4 levels, and either normal or slightly suppressed TSH levels.

    This pattern of altered thyroid hormones is now generally agreed to be a result of impairment in extra-thyroidal peripheral metabolism.' The liver, and to a lesser degree the kidneys, play a dominant, although often under-discussed role in the metabolism of thyroid hormones. The majority of the most metabolically active thyroid hormone, 3,5,3'-triiodothyronine (T3) (Figure 1), is generated in peripheral tissue. Similarly, the preponderance of its competitive inhibitor, 3,3',5'-triiodothyronine (rT3; reverse T3) (Figure 1) is generated outside the thyroid gland. Further transformations to T2 and T1 isomers also occur almost exclusively in peripheral tissue. These transformations are all catalyzed by deiodination enzymes, which remove iodine atoms from the inner tyrosyl or outer phenolic benzene rings. This stepwise deiodination is the major route of thyroid hormone metabolism and results in both active and inactive metabolites.

    Tissue-specific deiodination of thyroid hormones determines, to a large degree, the fate of these hormones. The majority of the activation of the prohormone T4 to the more metabolically active T3 occurs through non-thyroidal deiodination. The inactivation of T3 to T2 isomers, the inactivation of T4 to yield rT3, and the eventual degradation of rT3 to T2 isomers are also catalyzed by the deiodinase family of enzymes. This stepwise removal of iodine from the benzene ring of the inner tyrosyl and outer phenolic benzene ring is currently thought to be the major route of peripheral thyroid hormone metabolism.

    The thyroid hormones, thyroxine (T4) and triiodothyronine (T3), are tyrosine-based hormones produced by the thyroid gland. An important component in the synthesis is iodine. The major form of thyroid hormone in the blood is thyroxine (T4). The ratio of T4 to T3 released in the blood is roughly 20 to 1. Thyroxine is converted to the active T3 (three to four times more potent than T4) within cells by deiodinases (5'-iodinase). These are further processed by decarboxylation and deiodination to produce iodothyronamine (T1a) and thyronamine (T0a).

    Most of the thyroid hormone circulating in the blood is bound to transport proteins. Only a very small fraction of the circulating hormone is free (unbound) and biologically active, hence measuring concentrations of free thyroid hormones is of great diagnostic value.

    When thyroid hormone is bound, it is not active, so the amount of free T3/T4 is what is important. For this reason, measuring total thyroxine in the blood can be misleading.

    The thyronamines function via some unknown mechanism to inhibit neuronal activity; this plays an important role in the hibernation cycles of mammals and the moulting behaviour of birds. One effect of administering the thyronamines is a severe drop in body temperature.

    Free T4 index: normal 5-11.
    Total T3: normal 75-175 ng/dL. This measurement IS NOT indicated if hypothyroidism is suspected (will be normal in 20-30% of hypothyroid patients).

    Free T3 index: normal 75-175.
    Free T4 (by equilibrium dialysis): normal 0.7-2.2 ng/dL is most precise method since it measures free fraction directly
    Free T3 (by dialysis): normal 210-440 pg/dL
    Happiness & Health,

    PATHS, S.A. Staff

    PATHS

  • #2
    Thyroid Gland: Located at the base of the neck and makes thyroxin (thyroid hormone or T4) which signals the cells to make energy.

    Adrenal Glands: Located on top of the kidneys, they make many hormones (Cortisol, DHEA etc.). Their main function is to help us deal with stress or help us survive. They help maintain stability of many bodily functions (physical, emotional, thermal, hormonal etc.). When there is stress (anything physical, chemical, emotional, nutritional, lifestyle such as sleep patterns etc. which causes us to have to adapt), the adrenals need to work. Excessive stress can exhaust them. Thyroid energy in excess of what the adrenals can handle is a stressor to the adrenals.

    Pituitary Gland: Situated at the base of the brain (above the roof of the mouth), it sends out instructions to many other glands telling them how much hormone to produce. One such hormone is TSH (Thyroid Stimulating Hormone) which signals to the thyroid gland to make thyroid hormone. The pituitary gland determines how much TSH to secrete (i.e., how much thyroid hormone to tell the thyroid gland to make) based on:

    · How much thyroid hormone is available
    · How much thyroid hormone the body needs
    · How much thyroid hormone the body (actually the adrenals) can tolerate
    · TSH: Is a hormone produced by the pituitary gland and whose
    function is to signal the thyroid gland to make more thyroid hormone. It represents the pituitary's need or desire for more thyroid hormone (T4 or T3). Thus a high TSH level is like the pituitary saying it has a ‘high need for thyroid hormone’ or the body can tolerate more thyroid energy than it is getting and it is meant to generate more thyroid hormone production. Conversely, a low TSH reflects either a low need or desire for thyroid hormone or a low tolerance for the thyroid hormone and is meant to reduce thyroid hormone production. An optimal value of TSH means the thyroid hormone levels match the body’s energy needs and/or ability to utilize the energy.


    Digestion

    One way to understand the metabolic process is to follow the path of a typical nutrient as it passes through the body. The digestive process is discussed in Digestion, while nutrients are examined in Nutrients and Nutrition as well as in Proteins, Amino Acids, Enzymes, Carbohydrates, and Vitamins. Here we touch on the process only in general terms, as it relates to metabolism.

    The term digestion is not defined in the essay on that subject, because it is an everyday word whose meaning is widely known. For the present purposes, however, it is important to identify it as the process of breaking down food into simpler chemical compounds as a means of making nutrients absorbable by the body. This is a catabolic process, because the molecules of which foods are made are much too large to pass through the lining of the digestive system and directly into the bloodstream. Thanks to the digestive process, smaller molecules are formed and enter the bloodstream, from whence they are carried to individual cells throughout a person's body.

    The smaller molecules into which nutrients are broken down make up the metabolic pool, which consists of simpler substances. The metabolic pool includes simple sugars, made by the breakdown of complex carbohydrates; glycerol and fatty acids, which come from the conversion of lipids, or fats; and amino acids, formed by the breakdown of proteins. Substances in the metabolic pool provide material from which new tissue is constructed—an anabolic process.

    The chemical breakdown of substances in the cells is a complex and wondrous process. For instance, a cell converts a sugar molecule into carbon dioxide and water over the course of about two dozen separate chemical reactions. This is what cell biologists call a metabolic pathway: an orderly sequence of reactions, with particular enzymes (a type of protein that speeds up chemical reactions) acting at each step along the way. In this instance, each chemical reaction makes a relatively modest change in the sugar molecule—for example, the removal of a single oxygen atom or a single hydrogen atom—and each is accompanied by the release of energy, a result of the breaking of chemical bonds between atoms.

    Atp and Adp

    Cells capture and store the energy released in catabolic reactions through the use of chemical compounds known as energy carriers. The most significant example of an energy carrier is adenosine triphosphate, or ATP, which is formed when a simpler compound, adenosine diphosphate (ADP), combines with a phosphate group. (A phosphate is a chemical compound that contains oxygen bonded to phosphorus, and the term group in chemistry refers to a combination of atoms from two or more elements that tend to bond with other elements or compounds in certain characteristic ways.)
    ADP will combine with a phosphate group only if energy is added to it. In cells, that energy comes from the catabolism of compounds in the metabolic pool, including sugars, glycerol (related to fats), and fatty acids. The ATP molecule formed in this manner has taken up the energy previously stored in the sugar molecule, and thereafter, whenever a cell needs energy for some process, it can obtain it from an ATP molecule. The reverse of this process also takes place inside cells. That is, energy from an ATP molecule can be used to put simpler molecules together to make more complex molecules. For example, suppose that a cell needs to repair a rupture in its cell membrane. To do so, it will need to produce new protein molecules, which are made from hundreds or thousands of amino-acid molecules. These molecules can be obtained from the metabolic pool.

    The reactions by which a compound is metabolized differ for various nutrients. Also, energy carriers other than ATP may play a part. For example, the compound known as nicotinamide adenine dinucleotide phosphate (NADPH) also has a role in the catabolism and anabolism of various substances. The general outline described here, however, applies to all metabolic reactions.

    Energy released from organic nutrients (those containing carbon and hydrogen) during catabolism is stored within ATP, in the form of the high-energy chemical bonds between the second and third molecules of phosphate. The cell uses ATP for synthesizing cell components from simple precursors, for the mechanical work of contraction and motion, and for transport of substances across its membrane. ATP's energy is released when this bond is broken, turning ATP into ADP. The cell uses the energy derived from catabolism to fuel anabolic reactions that synthesize cell components. Although anabolism and catabolism occur simultaneously in the cell, their rates are controlled independently. Cells separate these pathways because catabolism is a "downhill" process, or one in which energy is released, while anabolism is an "uphill" process requiring the input of energy.

    Catabolism and anabolism share an important common sequence of reactions known collectively as the citric acid cycle, the tricarboxylic acid cycle, or the Krebs cycle. Named after the German-born British biochemist Sir Hans Adolf Krebs (1900-1981), the Krebs cycle is a series of chemical reactions in which tissues use carbohydrates, fats, and proteins to produce energy; it is part of a larger series of enzymatic reactions known as oxidative phosphorylation. In the latter reaction, glucose is broken down to release energy, which is stored in the form of ATP—a catabolic sequence. At the same time, other molecules produced by the Krebs cycle are used as precursor molecules for reactions that build proteins, fats, and carbohydrates—an anabolic sequence. (A precursor is a substance, cellular component, or cell from which another substance, cellular component, or cell—different in kind from the precursor—is formed.)

    Lipids

    As noted earlier, many practical aspects of metabolism are discussed elsewhere, particularly in the essays Digestion and Nutrients and Nutrition. Also, two types of chemical compound, proteins and carbohydrates, are so important to a variety of metabolic processes that they are examined in detail within entries of their own. In the present context, let us focus on the third major kind of nutrient, lipids or fats.
    Happiness & Health,

    PATHS, S.A. Staff

    PATHS

    Comment


    • #3
      Lipids are soluble in nonpolar solvents, which is the reason why a gravy stain or other grease stain is difficult to remove from clothing without a powerful detergent or spot remover. Water molecules are polar, because the opposing electric charges tend to occupy opposite sides or ends of the molecule. In a molecule of oil, whether derived from petroleum or from animal or vegetable fat, electric charges are very small, and are distributed evenly throughout the molecule.

      Whereas water molecules tend to bond relatively well, like a bunch of bar magnets attaching to one another at their opposing poles, oil and fat molecules tend not to bond. (The "bond" referred to here is the fairly weak one between molecules. Much stronger is the chemical bond within molecules—a bond that, when broken, brings about a release of energy, as noted earlier.) Their functions are as varied as their structures, but because they are all fat-soluble, lipids share in the ability to approach and even to enter cells. The latter have membranes that, while highly complex in structure, can be identified in simple terms as containing lipids or lipoproteins (lipids attached to proteins). The behavior of lipids and lipid-like molecules, therefore, becomes very important in understanding how a substance may or may not enter a cell. Such a substance may be toxic, as in the case of some pesticides, but if they are lipid-like, they are able to penetrate the cell's membrane. (See Food Webs for more about the biomagnification of DDT.)
      In addition to lipoproteins, there are glycolipids, or lipids attached to sugars, as well as lipids attached to alcohols and some to phosphoric acids. The attachment with other compounds greatly alters the behavior of a lipid, often making them bipolar—that is, one end of the molecule is water-soluble. This is important, because it allows lipids to move out of the intestines and into the bloodstream. In the digestive process, lipids are made water-soluble either by being broken down into smaller parts or through association with another substance. The breaking down usually is done via two different processes: hydrolysis, or chemical reaction with water, and saponification. The latter, a reaction in which certain kinds of organic compounds are hydrolyzed to produce an alcohol and a salt, is used in making soap.

      Putting Lipids to Use

      Derived from living systems of plants, animals, or humans, lipids are essential to good health, not only for humans but also for other animals and even plants. Seeds, for example, contain lipids for the storage of energy. Because fat is a poor conductor of heat, lipids also can function as effective insulators, and for this reason, people living in Arctic zones seek fatty foods such as blubber. Some lipids function as chemical messengers in the body, while others serve as storage areas for chemical energy. There is a good reason why babies are born with "baby fat" and why children entering puberty often tend to become chubby: in both cases, they are building up energy reserves for the great metabolic hurdles that lie ahead, and within a few years, they will have used up those excessive fat stores.

      Fats and Oils

      Fats and oils are both energy-rich compounds that are basic components of the normal diet. Both have essentially the same chemical structure—a mixture of fatty acids combined with glycerol—and are insoluble (do not dissolve) in water. While fats remain solid or at least semisolid at room temperature, however, most oils very quickly become liquid at increased temperatures. Animal fats and oils include butter, lard, tallow, and fish oil. Numerous other oils, such as cottonseed, peanut, and corn oils, are derived from plants.

      Fats have two main functions: they provide some of the raw material for synthesizing (creating) and repairing tissues, and they serve as a concentrated source of fuel energy. Fats, in fact, provide humans with roughly twice as much energy, per unit weight, as carbohydrates and proteins. Fats are not only an important source of day-to-day energy, but they also can be stored indefinitely as adipose (fat) tissue in case of future need. Fats also help by transporting fat-soluble vitamins, such as A and D (see Vitamins), throughout the system. They cushion and form protective pads around delicate organs, such as the heart, liver and kidneys, and the layer of fat under the skin helps insulate the body against too much heat loss. They even add to the flavor of foods that might otherwise be inedible.

      Not All Fat Is Created Equal

      Although normal amounts of certain kinds of fat in the diet are essential to good health, unnecessarily high amounts (especially of unhealthy fats) can lead to various problems. Healthy fats include those from fatty fish, such as salmon, mackerel, or tuna, or from fat-containing vegetables, such as the avocado. In addition, many vegetable oils, particularly olive oil, can be beneficial.

      Bad fats, on the other hand, are usually ones that have been tampered with through a process known as hydrogenation. This is a term describing any chemical reaction in which hydrogen atoms are added to fill in chemical bonds between carbon and other atoms, but in the case of fatty foods, hydrogenation involves the saturation of hydrocarbons, organic chemical compounds whose molecules are made up of nothing but carbon and hydrogen atoms. When they are treated with hydrogen gas, they become "saturated" with hydrogen atoms. Saturated fats, as they are called, are harder and more stable and stand up better to the heat of frying, which makes them more desirable for use in commercial products. For this reason, many foods contain hydrogenated vegetable oil; however, saturated fats have been linked to a rise in blood cholesterol levels—and to an increased risk of heart disease.

      Cholesterol is a variety of lipid, and, like other lipids, some of it is essential—but only some and only of the right kind. Most cholesterol is transported through the blood in low-density lipoproteins, or LDLs, which have been nicknamed bad cholesterol. These lipoproteins are received by LDL receptors on the cell membranes, but if there are more LDLs than LDL receptors, the excess LDLs will be deposited in the arteries. Thus, LDLs are not really "bad" unless there are too many of them. On the other hand, "good" cholesterol (HDLs, or high-density lipoproteins) help protect against damage to the artery walls by carrying excess LDLs back to the liver.

      How Much Is Too Much?

      A certain amount of excess adipose tissue can be valuable during periods of illness, overactivity, or food shortages. Too much, however, can be unsightly and also can overwork the heart and put added stress on other parts of the body. High levels of certain circulating fats may lead to atherosclerosis, which is a thickening of the artery walls, and they have been linked to various illnesses, including cancer.

      With fat, as with many things where the body is concerned, if a little is a good, this does not mean that a lot is better. In the past, nutritionists considered a diet that obtained 40% of its calories from fats a reasonable one; today, however, they recommend that no more than 30% of all calories (and preferably an even smaller percentage) come from fat. Agreement on this point, however, is far from universal. Some physicians and scientists maintain that dietary fat does not contribute as much to body fat as do carbohydrates. Carbohydrates are good for someone who needs a boost of energy that can be consumed easily by the body, such as an athlete going into competition. But for in active people—and this includes a large portion of Americans—carbohydrates simply are stored as fat.

      Experts do not even agree on the answer to a question much simpler than "How much is too much fat in the diet?"—the question "How much is too much fat on the body?" Some doctors classify a person as obese whose weight is at least 20% more than the recommended weight for his or her height, but others say that standard height-and-weight charts are misleading. After all, muscle weighs more than fat, and it is conceivable that a very muscular athlete with very little body fat might qualify as "overweight" compared with the recommended weight for his or her height.

      Body Fat, the Sexes, and Nature

      Because of the complexity of the issue, many experts contend that the proportion of fat to muscle, measured by the skinfold "pinch" test, is a better measure of obesity. (Being obese is not the same as being overweight: the muscular athlete described in the last paragraph is overweight but not obese, a term that implies an excess of body fat.) In healthy adults, fat typically should account for about 18-25% of the body weight in females and 15-20% in males.

      The reason for the difference between men and women is that fat naturally accumulates in a woman's buttocks and thighs, because nature "assumes" that she will bear children, in which case such excess fat will be useful. This is why women over the age of about 25 often complain that when they and their husbands or boyfriends embark on a fitness program together, the men usually see results faster. The reason is that there is no genetic or evolutionary benefit to be gained from a man having fat around his waist, which is where men usually gain.
      Happiness & Health,

      PATHS, S.A. Staff

      PATHS

      Comment


      • #4
        This is great info!
        Happiness & Health,

        PATHS, S.A. Staff

        PATHS

        Comment


        • #5
          It took me a long time to try the Take if Off mod compared to when I first started PATHS.

          I had tried other biological ones like ultimate body and cellular health.

          Anyway I am now on Take it Off and am so impressed with it.

          I really thought I would have cog dis with this one but I didn't notice any at all.

          There has been no mental challenge on this at all for me. Just I feel full more often and get full quicker when eating and feel my clothes fitting looser. Also my body just feels like it is running smoother inside.

          Love it
          Keep your mind on the aether www.PathsToSucceed.com

          Comment


          • #6
            I love the Take it Off Path too! I have been using it on and off for about 4 years and my experience is similar to yours, Jessica. It definitely works like it says it does. I am even able to go on cleanses while I am on it, which I could not do before.
            The universe is full of magical things, patiently waiting for our wits to sharpen.
            -Eden Phillpotts

            www.pathsforpeace.com

            http://www.theanimalrescuesite.com/c...faces?siteId=3

            Comment


            • #7
              Thanks a lot for sharing. But there is a little issue that I couldn't get but
              just thinking that if won't be seen disgusting. So, should I do it or not?
              COMMERCE Personal Trainer

              Comment

              Working...
              X