improving radiant antena reception
Hi there,
I am a new member of this forum and this is my first post. while searching informations about radiant energy antena a found this text. maybe it will be usefull :
Radiant Energy Diatribe
****THIS DISCUSSION WAS GENERATED BETWEEN PAUL CLINT and BRUCE PERREAULT in a series of e-mails between 01/29/2001 and 02/03/2001***
Bruce A. Perreault February 2nd, 2003 (revised 10/22/04)
e-mails were edited for clarity
Cable Generator Discussion
Static Electricity that is generated on a properly treated insulated wire will produce more than a kilowatt in a light wind, according to Paul Clint. This becomes possible because of a phenomenon in physics known as the electret effect. This effect occurs when the surface between a conductor and a dielectric obtains a permanent electric field. This field has the same effect on static electricity that a magnetic field has on iron filings.
A treated piece of insulated wire strung out in the wind will act as a Van de Graaf high voltage generator. In some conditions, a 400-foot length of wire can generate 50 kilowatts and even on a bright sunny day with a breeze of 3-4 mph, it will average 10 kilowatts, according to Paul Clint's calculations.
How can the static energy produced by the cable be converted into a usable form?
The only practical method I have found in the past was to charge a battery. My ionic diode component might be another way to do the conversion. I will run some tests when I get the time..
The static electricity generated can be used to charge a battery using nothing but a spark plug, a coil and a capacitor, but the process is only 15-20% efficient using conventional diodes. An efficient voltage controller must be used to keep your battery from overcharging. The circuit is needed to convert static charge into low voltage to charge batteries. The least expensive design uses a spark plug, an old automotive coil, a .001, 3 to 20kv capacitor and a ground rod.
Thus far, I have devised two methods. The first is simple and inexpensive but only 15-20% efficient. It simply involves breaking the current into pulses with a spark gap, and then transforming the voltage down and current up with a transformer and increasing the pulse duration with a capacitor in parallel.
The second method will use a micro-processor to monitor voltage and current. The impedance is then adjusted to make the charging current as smooth as possible. This circuit can also easily protect a battery from overcharging. Bill Alek’s controller might be the perfect solution for the task.
Perreault Conversion Circuit
click here for an updated version
The electret effect is more important than you realize. Any ordinary antenna will collect charge, but without the electret effect, most of it is dissipated before it can be tapped. The electric field created by the electret effect not only attracts the charge from the air, but then it traps it in the conductor. This effect will also be produced even in a vacuum.
Virtually all insulated cable exhibits some degree of the electret effect, which the wire manufacturers consider undesirable. Treating the coax will increase the electret effect at least 10 times. Treatment cost is negligible. Obviously, the treatment process is the essential piece to receiving enough energy to be useful. Teflon tape can be dangled from a cable and wonderful results can be obtained. In a thunderstorm, using an ordinary 400-foot cable with Teflon tape has produced a continuous arc eight feet long. Essentially, what you have is a type of Van De Graff Generator. I have not witnessed this myself but this appears to be possible because a lightning discharge releases energy that has been estimated to be in the billion watt range.
Conditioning the Cable
Buy cheap coax RF cable, that has a center wire and a shield cylindrical wire. Then cut off the outer plastic skin and put the whole cable into your oven and heat it up to about 100 degrees Celsius or more, so that the internal plastic insulation almost begins to melt.
Then apply from a D.C. high voltage source around 30 kilovolts or maybe a little less, so that there will be no arc-over yet inside the cable. Then let the cable cool down slowly again, but still apply the high voltage D.C.
When the cable has come down to room temperature again, it will be a pretty good electret!
Now hang this cable in the air and the outer layer of the shield metal (which does not have any plastic isolation skin anymore), will now attract lots of free ionized electrons from the air and charge up the outer shield metal of the cable. This way you can collect lots of more charges as before and have a much higher electrical output from this cable.
Hope this helps
Regards, Stefan
The electret effect is a problem in the manufacturing of coaxial cable. This problem arises from the process used to make insulated wire; an unwanted electret effect is created. Engineers work very hard to reduce the effect but are unable to completely eliminate it. What I am saying is that all insulated wire exhibits some electret effect. The engineers go to great lengths to minimize it. The treatment as suggested by Stefan Hartmann should increase the electret effect of the cable at least 100 times, and with some cable, as much as 1000 times (depending on how hard the engineers worked). The electret effect is present wherever plastic is in contact with a conductor. It is much better to use unshielded cable and it is cheaper as well. If you do use shielded cable, it might not draw as much radiant energy. To begin your radiant energy experiments string out a 300-foot length of ordinary coax cable and do not connect the other end to anything. Use the conversion circuit in this article to convert your collected charge into electrical power. When you ground this circuit do not use the one that is connected to the electric companies meter. If you do not get at least a couple of pops per minute from your spark plug you will need to condition your cable as explained by Stefan Hartmann. Tying a bunch of 2-foot pieces of Teflon tape to your cable will also increase its draw power.
Virtually any insulated wire has a small electric field surrounding it that attracts positively charged air molecules (called ions) to itself. This charged moving air mass induces a negative charge of static electricity that builds up in the cable conductor. Under most circumstances, the conductor in a cable is connected to a circuit and the current is absorbed without notice. Nevertheless, if the conductor is connected to a spark plug (whose threads are grounded) it will produce an electric arc across the spark gap each time the voltage in the cable rises to the limit of the spark plug's gap. In some cases with a long piece of cable and some air current (wind), the spark gap will arc almost continuously. During a thunderstorm, Paul Clint reported to me that he once witnessed an eight feet long arc during a thunderstorm. A continuous arc or one that is eight feet long indicates to me that a substantial amount of power was being received. This means that a treated piece of insulated wire can be strung out on a fence and used to generate enough power to provide a home owner with all they need. It also means that it is possible to generate power in winds that have previously been considered worthless (3-4 mph).
H
Hi there,
I am a new member of this forum and this is my first post. while searching informations about radiant energy antena a found this text. maybe it will be usefull :
Radiant Energy Diatribe
****THIS DISCUSSION WAS GENERATED BETWEEN PAUL CLINT and BRUCE PERREAULT in a series of e-mails between 01/29/2001 and 02/03/2001***
Bruce A. Perreault February 2nd, 2003 (revised 10/22/04)
e-mails were edited for clarity
Cable Generator Discussion
Static Electricity that is generated on a properly treated insulated wire will produce more than a kilowatt in a light wind, according to Paul Clint. This becomes possible because of a phenomenon in physics known as the electret effect. This effect occurs when the surface between a conductor and a dielectric obtains a permanent electric field. This field has the same effect on static electricity that a magnetic field has on iron filings.
A treated piece of insulated wire strung out in the wind will act as a Van de Graaf high voltage generator. In some conditions, a 400-foot length of wire can generate 50 kilowatts and even on a bright sunny day with a breeze of 3-4 mph, it will average 10 kilowatts, according to Paul Clint's calculations.
How can the static energy produced by the cable be converted into a usable form?
The only practical method I have found in the past was to charge a battery. My ionic diode component might be another way to do the conversion. I will run some tests when I get the time..
The static electricity generated can be used to charge a battery using nothing but a spark plug, a coil and a capacitor, but the process is only 15-20% efficient using conventional diodes. An efficient voltage controller must be used to keep your battery from overcharging. The circuit is needed to convert static charge into low voltage to charge batteries. The least expensive design uses a spark plug, an old automotive coil, a .001, 3 to 20kv capacitor and a ground rod.
Thus far, I have devised two methods. The first is simple and inexpensive but only 15-20% efficient. It simply involves breaking the current into pulses with a spark gap, and then transforming the voltage down and current up with a transformer and increasing the pulse duration with a capacitor in parallel.
The second method will use a micro-processor to monitor voltage and current. The impedance is then adjusted to make the charging current as smooth as possible. This circuit can also easily protect a battery from overcharging. Bill Alek’s controller might be the perfect solution for the task.
Perreault Conversion Circuit
click here for an updated version
The electret effect is more important than you realize. Any ordinary antenna will collect charge, but without the electret effect, most of it is dissipated before it can be tapped. The electric field created by the electret effect not only attracts the charge from the air, but then it traps it in the conductor. This effect will also be produced even in a vacuum.
Virtually all insulated cable exhibits some degree of the electret effect, which the wire manufacturers consider undesirable. Treating the coax will increase the electret effect at least 10 times. Treatment cost is negligible. Obviously, the treatment process is the essential piece to receiving enough energy to be useful. Teflon tape can be dangled from a cable and wonderful results can be obtained. In a thunderstorm, using an ordinary 400-foot cable with Teflon tape has produced a continuous arc eight feet long. Essentially, what you have is a type of Van De Graff Generator. I have not witnessed this myself but this appears to be possible because a lightning discharge releases energy that has been estimated to be in the billion watt range.
Conditioning the Cable
Buy cheap coax RF cable, that has a center wire and a shield cylindrical wire. Then cut off the outer plastic skin and put the whole cable into your oven and heat it up to about 100 degrees Celsius or more, so that the internal plastic insulation almost begins to melt.
Then apply from a D.C. high voltage source around 30 kilovolts or maybe a little less, so that there will be no arc-over yet inside the cable. Then let the cable cool down slowly again, but still apply the high voltage D.C.
When the cable has come down to room temperature again, it will be a pretty good electret!
Now hang this cable in the air and the outer layer of the shield metal (which does not have any plastic isolation skin anymore), will now attract lots of free ionized electrons from the air and charge up the outer shield metal of the cable. This way you can collect lots of more charges as before and have a much higher electrical output from this cable.
Hope this helps
Regards, Stefan
The electret effect is a problem in the manufacturing of coaxial cable. This problem arises from the process used to make insulated wire; an unwanted electret effect is created. Engineers work very hard to reduce the effect but are unable to completely eliminate it. What I am saying is that all insulated wire exhibits some electret effect. The engineers go to great lengths to minimize it. The treatment as suggested by Stefan Hartmann should increase the electret effect of the cable at least 100 times, and with some cable, as much as 1000 times (depending on how hard the engineers worked). The electret effect is present wherever plastic is in contact with a conductor. It is much better to use unshielded cable and it is cheaper as well. If you do use shielded cable, it might not draw as much radiant energy. To begin your radiant energy experiments string out a 300-foot length of ordinary coax cable and do not connect the other end to anything. Use the conversion circuit in this article to convert your collected charge into electrical power. When you ground this circuit do not use the one that is connected to the electric companies meter. If you do not get at least a couple of pops per minute from your spark plug you will need to condition your cable as explained by Stefan Hartmann. Tying a bunch of 2-foot pieces of Teflon tape to your cable will also increase its draw power.
Virtually any insulated wire has a small electric field surrounding it that attracts positively charged air molecules (called ions) to itself. This charged moving air mass induces a negative charge of static electricity that builds up in the cable conductor. Under most circumstances, the conductor in a cable is connected to a circuit and the current is absorbed without notice. Nevertheless, if the conductor is connected to a spark plug (whose threads are grounded) it will produce an electric arc across the spark gap each time the voltage in the cable rises to the limit of the spark plug's gap. In some cases with a long piece of cable and some air current (wind), the spark gap will arc almost continuously. During a thunderstorm, Paul Clint reported to me that he once witnessed an eight feet long arc during a thunderstorm. A continuous arc or one that is eight feet long indicates to me that a substantial amount of power was being received. This means that a treated piece of insulated wire can be strung out on a fence and used to generate enough power to provide a home owner with all they need. It also means that it is possible to generate power in winds that have previously been considered worthless (3-4 mph).
H
Comment